Efficacy of liver cancer microwave ablation through ultrasonic image guidance under deep migration feature algorithm

Author:

Ye Changkong,Zhang Wenyan,Pang Zijuan,Wang Wei

Abstract

Objective: To explore the therapeutic effects of ultrasound-guided microwave ablation and radio frequency ablation for liver cancer patients. Methods: Seventy-eight patients with microwave ablation were rolled into the experimental group and 56 patients with radio frequency ablation were in the control group. This study was conducted from March 1, 2019 to June 30, 2020 in our hospital. Based on Convolutional Neural Networks (CNN) and Migration feature (MF), a new ultrasound image diagnosis algorithm CNNMF was constructed, which was compared with AdaBoost and PCA-BP based on Principal component analysis (PCA) and back propagation (BP), and the accuracy (Acc), specificity (Spe), sensitivity (Sen), and F1 values of the three algorithms were calculated. Then, the CNNMF algorithm was applied to the ultrasonic image diagnosis of the two patients, and the postoperative ablation points, complications and ablation time were recorded. Results: The Acc (96.31%), Spe (89.07%), Sen (91.26%), and F1 value (0.79%) of the CNNMF algorithm were obviously larger than the AdaBoost and the PCA-BP algorithms (P<0.05); in contrast with the control group. The number of ablation points in the experimental group was obviously larger, and the ablation time was obviously shorter (P<0.05); the experimental group had one case of liver abscess and two cases of wound pain after surgery, which were both obviously less than the control group (four cases; five cases) (P<0.05) Conclusion: In contrast with traditional algorithms, the CNNMF algorithm has better diagnostic performance for liver cancer ultrasound images. In contrast with radio frequency ablation, microwave ablation has better ablation effects for liver cancer tumors, and can reduce the incidence of postoperative complications in patients, which is safe and feasible. doi: https://doi.org/10.12669/pjms.37.6-WIT.4885 How to cite this:Riaz A, Sughra U, Jawaid SA, Masood J. Measurement of Service Quality Gaps in Dental Services using SERVQUAL in Public Hospitals of Rawalpindi. Pak J Med Sci. 2021;37(6):1693-1698. doi: https://doi.org/10.12669/pjms.37.6-WIT.4885 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

Pakistan Journal of Medical Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3