Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus

Author:

Lowe Ryan,Pow Nissan,Serban Iulian Vlad,Charlin Laurent,Liu Chia-Wei,Pineau Joelle

Abstract

In this paper, we construct and train end-to-end neural network-based dialogue systems usingan updated version of the recent Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This dataset is interesting because of its size, long context lengths, and technical nature; thus, it can be used to train large models directly from data with minimal feature engineering, which can be both time consuming and expensive. We provide baselines  in two different environments: one where models are trained to maximize the log-likelihood of a generated utterance  conditioned on the context of the conversation, and one where models are trained to select the correct next response from a list of candidate responses. These are both evaluated on a recall task that we call Next Utterance Classification (NUC), as well as other generation-specific metrics. Finally, we provide a qualitative error analysis to help determine the most promising directions for future research on the Ubuntu  Dialogue Corpus, and for end-to-end dialogue systems in general.

Publisher

University of Illinois Libraries

Subject

Linguistics and Language,Communication,Language and Linguistics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the Experience of LGBTQ+ People Using Large Language Model Based Chatbots for Mental Health Support;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

2. Toward an end-to-end implicit addressee modeling for dialogue disentanglement;Multimedia Tools and Applications;2024-02-06

3. Introduction;Synthesis Lectures on Human Language Technologies;2024

4. Disentangling User Conversations with Voice Assistants for Online Shopping;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

5. PICO: An Approach to Build Dataset for Customer Service Chatbot;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3