Affiliation:
1. Federal State Research Institute of Influenza
Abstract
Human A (H3N2) influenza viruses are distinguished by a high rate of evolution and regularly cause epidemics around the world. Their ability to adapt and to escape from the host's immune response and to change their receptor specificity is very high. Over the past 20 years, these viruses have lost the ability to agglutinate red blood cells of chickens and turkeys and have practically ceased to propagate in chicken embryos - the main source of influenza vaccines. Isolation of viruses in the MDCK cell culture led to the selection of strains that lose one of the potential glycosylation sites. Many of the A (H3N2) strains have acquired mutations in neuraminidase, which distort the results of antigenic analysis in the hemagglutination inhibition test - the cornerstone method for the analysis of the match between viral isolates circulating in human population to strains selected for the influenza vaccines. In this regard, the characteristics of the antigenic properties of influenza A (H3N2) viruses by traditional methods become poorly informative, and the selection of vaccine strains of this subtype is erroneous, which is reflected in the discrepancy between vaccine and circulating A (H3N2) viruses in recent years (2013-2014, 2014 -2015, 2015-2016). The search, development and implementation of new algorithms for the isolation and antigen analysis of influenza A (H3N2) viruses are extremely urgent.
Publisher
Central Research Institute for Epidemiology
Subject
Infectious Diseases,Virology,General Medicine
Reference25 articles.
1. Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006; 12(1): 9-18.
2. Pan K., Deem M.W. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. J. R. Soc. Interface. 2011; 8(64): 1644-53.
3. Koel B.F., Burke D.F., Bestebroer T.M., van der Vliet S., Skepner E., Lewis N.S., et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013; 342(6161): 976-9.
4. Xiong X., McCauley J.W., Steinhauer D.A. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr. Top. Microbiol. Immunol. 2014; 385: 63-91.
5. Paulson J.C. Interactions of animal viruses with cell surface. In: The Receptors. Volume 2. Los Angeles: Academic Press; 1985: 131-219.