PROBLEMS OF ISOLATION, IDENTIFICATION AND ANTIGENIC CHARACTERIZATION OF RECENT HUMAN A(H3N2) INFLUENZA VIRUSES

Author:

Petrova P. A.1,Konovalova N. I.1,Danilenko D. M.1,Vasilieva A. D.1,Eropkin M. Yu.1

Affiliation:

1. Federal State Research Institute of Influenza

Abstract

Human A (H3N2) influenza viruses are distinguished by a high rate of evolution and regularly cause epidemics around the world. Their ability to adapt and to escape from the host's immune response and to change their receptor specificity is very high. Over the past 20 years, these viruses have lost the ability to agglutinate red blood cells of chickens and turkeys and have practically ceased to propagate in chicken embryos - the main source of influenza vaccines. Isolation of viruses in the MDCK cell culture led to the selection of strains that lose one of the potential glycosylation sites. Many of the A (H3N2) strains have acquired mutations in neuraminidase, which distort the results of antigenic analysis in the hemagglutination inhibition test - the cornerstone method for the analysis of the match between viral isolates circulating in human population to strains selected for the influenza vaccines. In this regard, the characteristics of the antigenic properties of influenza A (H3N2) viruses by traditional methods become poorly informative, and the selection of vaccine strains of this subtype is erroneous, which is reflected in the discrepancy between vaccine and circulating A (H3N2) viruses in recent years (2013-2014, 2014 -2015, 2015-2016). The search, development and implementation of new algorithms for the isolation and antigen analysis of influenza A (H3N2) viruses are extremely urgent.

Publisher

Central Research Institute for Epidemiology

Subject

Infectious Diseases,Virology,General Medicine

Reference25 articles.

1. Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006; 12(1): 9-18.

2. Pan K., Deem M.W. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. J. R. Soc. Interface. 2011; 8(64): 1644-53.

3. Koel B.F., Burke D.F., Bestebroer T.M., van der Vliet S., Skepner E., Lewis N.S., et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013; 342(6161): 976-9.

4. Xiong X., McCauley J.W., Steinhauer D.A. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr. Top. Microbiol. Immunol. 2014; 385: 63-91.

5. Paulson J.C. Interactions of animal viruses with cell surface. In: The Receptors. Volume 2. Los Angeles: Academic Press; 1985: 131-219.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3