STUDY OF MUTAGENIC ACTIVITY NANO- AND MICROPARTICLES IN THE AMES TEST (SALMONELLA / MICROSOME)

Author:

Akhaltseva Lyudmila V.1,Zhurkov V. S.1,Sycheva L. P.2,Savostikova O. N.1,Alekseeva A. V.1

Affiliation:

1. Centre for Strategic Planning, Russian Ministry of Health

2. State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Abstract

Introduction. One of the important steps in assessing the nanoparticles (NP) safety is the analysis of mutagenic activity, including the evaluation of gene, chromosomal, and genomic mutations. Material and methods. The purpose of this investigation is to study the ability of different NP aqueus suspensions and the same compounds in microforms to unduce gene mutations in Salmonella/microsome test (Ames test). Anatase titanium dioxide NP coated with simethicone (33.16 ± 16.7 nm, 5-50000 μg/ml), magnetite NP coated with silicate (10 nm, 0.92-575 μg/ml), silver NP coated with аrabian gum (14 ± 0.2 nm, 5-50000 μg/ml), aluminum hydroxide nanofibres (50-70 nm, 24-3000 μg/ml) and multi-walled carbon nanotubes (Taunit MWСNTs, outer diameter 15-40 nm, inner diameter 3-8 nm, length 2 and more microns, 5-50000 μg/ml). In parallel, the mutagenic activity of equivalent microparticles was evaluated in experiments. Ames test (Salmonella/microsomes) registers gene mutations induced by a different mechanism of action, in the variant with preincubation. A set of Salmonella typhimurium indicator strains: TA 100 (base pair substitution mutations), TA 98 and TA 97 (mutations of the frameshift type of the genetic code) were used. Using addition the S9 microsomal activating mixture during the experiment makes it is possible to determine the effect not only of the substances themselves, but also of their metabolites. Conclusion. The investigated nanomaterials as well as their micro analogs in the studied dose range did not induce gene mutations in the Ames test both in presence and absence microsomal activating mixture.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Reference25 articles.

1. Sycheva L.P., Zhurkov V.S., Strategy of genotoxicity studying of nanomaterials. Nanotechnics. 2010; 4 (24): 70-4. (in Russian)

2. Durnev A.D. Genotoxicity evaluation of nanoparticles. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2014; 2: 76-83. (in Russian)

3. Assessment of toxicity and hazards of chemicals and their mixtures for human health: Guide R 1.2.3156-13. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor; 2014. (in Russian)

4. MU 1.2.2634-10. Microbiological and molecular-genetic evaluation of the effect of nanomaterials on representatives of microbiocenosis. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor; 2010. (in Russian)

5. OECD (Organization for Economic Cooperation and Development) (1997) Guidelines for the testing of chemicals. Bacteria reverse mutation test Guideline TG 471. http://www.oecd.org/dataoecd/18/31/1948418.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3