APPLICATION OF MATHEMATICAL PLANNING OF THE EXPERIMENT IN THE CHOOSING THE OPTIMUM CONDITIONS OF THE VAPOR-PHASE GAS-CHROMATOGRAPHIC DETERMINATION OF FORMALDEHYDE IN THE URINE

Author:

Alekseenko Аnton N.1,Zhurba O. M.1

Affiliation:

1. East-Siberian Institute of Medical and Ecological Research

Abstract

Introduction. There was substantiated a method for the determination of formaldehyde by vapor-phase gas chromatography by the use of derivatizing reagent o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine. Material and methods. Formaldehyde in urine was derivatized to o-pentafluorobenzyloxime and recovered to the vapor phase by heating the urine sample with o-(2,3,4,5,6-pentafluorbenzyl)hydroxylamine in a sealed vial. Gas-chromatographic analysis of the vapor-air phase was performed in a mode of the temperature gradient on a capillary column HP-5 with a flame ionization detector. Identification of the analyte in the form of the derivative-o- pentafluorobenzyloxime of formaldehyde was carried out according to the absolute retention time, which was established by comparing the chromatograms of model formaldehyde mixtures in the urine of different concentrations. Results. The optimal conditions for gas extraction are selected using mathematical experimental planning. The most important factors of gas extraction in the vapor-phase analysis are the temperature and time of the establishment of the interphase equilibrium with heating. From the experimentally obtained curves of the analytical signal on the temperature and the heating time, the zero level and the interval of variation of these factors are chosen. A matrix for planning a 2-factor experiment was constructed. The coefficients of the mathematical model are determined. There was carried out statistical processing of the experimental data, which was reduced to the estimation of the reproducibility of the optimization parameter and to the evaluation of the significance of the coefficient of the mathematical model. The adequacy of the mathematical model was evaluated, its interpretation was carried out. Discussion. The peak area of the analyte increases with the elevating the temperature and heating time, due to an increase in the analyte concentration in the vapor phase. Moreover, the heating time makes a greater contribution to the formation of the analytical signal than the temperature. The step of motion along the gradient was calculated and the experiments of steep ascent were carried out. Conclusion. According to the results of the steep ascent experiments, the optimal conditions for the gas extraction of formaldehyde in the form of a derivative were chosen.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3