Affiliation:
1. Technische Universität Dresden, 01062 Dresden, Germany
Abstract
The concurrent use of film cooling and internal cooling plays an important role to maintain the life of turbine blades and increase thermal efficiency. Several studies were published on the interaction of these cooling strategies but these are mainly investigations on how internal cooling influences film cooling. The present study contributes to an improved understanding on how the cooling extraction through film cooling holes is influencing internal flow structures and therefore internal cooling. The flow field in an internal cooling channel is investigated by measuring the velocity distribution with 2D-PIV. Heat transfer measurements are performed using the thermochromic liquid crystal technique. The test stand models a rectangular cooling channel (AR=2:1), which is equipped with parallel ribs of four different geometries (90° ribs, 60° ribs, 60°-V-shaped ribs and 60°-Λ-shaped ribs). Bleed holes are placed in the rib segments and are positioned at three positions in streamwise direction. The suction ratio is varied between 0 and 6 and the cooling channel Reynolds number is 30.000.
Publisher
Global Power and Propulsion Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献