Investigation of coupled radiation-conduction heat transfer in cylindrical systems by discontinuous spectral element method

Author:

Zhao Jiazi1,Sun Yasong1,Li Yifan1,Liu Changhao1

Affiliation:

1. Northwestern Polytechnical University, Dongxiang Road, 1, Xi’an, Shaanxi, 710072, China

Abstract

Nowadays, in order to achieve higher efficiency in aero-engines, the increase of turbine inlet temperature in aero-engine is in urgent need. At present, the turbine inlet temperature is around 2,000 K, which means the radiation and coupled radiation-conduction heat transfer play more and more important roles in hot section of aero-engines. As we all konw, considering the cylindrical symmetry of aero-engines. It is convenient to adopt the cylindrical coordinate to simplify the description of these systems, such as annular combustor, exhaust nozzle, etc. In this paper, Discontinuous Spectral Element Method (DSEM) is extended to solve the radiation and coupled radiation-coduction heat transfer in cylindrical coordinate system. Both the spatial and angular computational domains of radiative transfer equation (RTE) are discretized and solved by DSEM. For coupled radiation-conduction heat transfer problem, Discontinuous Spectral Element Method-Spectral Element Method (DSEM-SEM) scheme is used to avoid using two sets of grid which would cause the increase of computational cost and the decrease of accuracy. Then, the effects of various geometric and thermal physical parameters are comprehensively investigated. Finally, these methods are further extended to 2D cylindrical system.

Publisher

Global Power and Propulsion Society

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3