Numerical studies on shock wave and boundary layer interaction in the high-load turbine rotor cascades

Author:

Long Qiyun1,Qi Mingxu1,Ji Zhengxin1,Zhang Hong1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China

Abstract

Design of transonic high-load turbine is the essential approach to improve thrust-to-weight ratio of gas turbine engines. The shock wave and boundary layer interaction (SWBLI) in high-load turbine is one of the important unsteady sources and the main source of loss in turbine stages. In order to study mechanism of SWBLI in high-load turbine, rotor blades with loading coefficients range from 1.6 to 2 were designed and Delayed Detached Eddy Simulations (DDES) were carried out. The influences of loading coefficient, exit isentropic Mach number and incidence angle on characteristics of shock wave, SWBLI as well as flow details in the blade passages were compared. Results indicated the shock wave was generated and enhanced as exit isentropic Mach numbers increased leading to the increase of 2.8% in the total pressure loss coefficient. There was not significant difference in the total pressure loss coefficient as loading coefficient increased, however the shock wave was stronger and the separation bubble was longer at the loading coefficient of 1.6. Meanwhile, the influence of strong separation near the leading edge of suction surface induced by variation of incidence angles on the characteristics of the shock wave and the loss was also obvious.

Publisher

Global Power and Propulsion Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3