Sand management and erosion prediction in subsea multiphase pumps

Author:

Ekeberg Ina1,Bibet Pierre-Jean2,Knudsen Halfdan1,Reimers Øyvind1,Torbergsen Erik1

Affiliation:

1. OneSubsea, a Schlumberger Company, Sandslikroken 140, 5254 Sandsli, Norway

2. TotalEnergies SE 2, Place Jean Millier, 92078 Paris La Defence Cedex, France

Abstract

Over the past ten years, subsea multiphase pumping has accomplished extraordinary technology breakthroughs. The drivers are the oil and gas companies’ requirements for deeper and more remote subsea production satellites along with producing more challenging fluids. The multiphase pump (MPP) technology has kept evolving, breaking records in terms of shaft power, design pressure, differential pressure, and high viscosity capabilities. In addition, the current reliability data shows 86.5% probability of 5 years failure-free operation. Today, a main challenge is the ability to withstand sand erosion. A subsea MPP is placed on the seafloor to increase the production from subsea oil and gas wells, normally without any upstream separator or sand control system. The inevitable sand production is directed through the pump and transported further to the topside arrival separator. The MPP considered in this paper is a dynamic helico-axial pump with rotational speeds typically ranging up to 4,600 rpm and 3.5 MW. Obviously, both pump vendor and operator have made significant efforts to make the MPP as robust as possible. The first part of this paper describes how sand production is mitigated and controlled in a subsea oil and gas production system, but also how an accidental sand event can nevertheless happen. In the second part, the various wear mechanisms of MPP components are explained based on operational experience and wear tests. Finally, it presents the comparison of the wear observed on the Moho pump retrieved from the field with the wear rate and pattern predicted by the in-house MPP wear prediction model.

Publisher

Global Power and Propulsion Society

Subject

General Medicine

Reference5 articles.

1. DNVGL RP O501. Managing sand production and erosion, Edition August 2015.

2. Sand erosion of wear resistant materials;Haugen K.,1994

3. Effect of gas presence on erosive wear of split-vane electrical submersible pump;Morrison G.,2017

4. Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3