Fundamentals and recent progress of additive manufacturing-assisted porous materials on transpiration cooling

Author:

Xu Ruina1,Cheng Zhilong1,Jiang Peixue1

Affiliation:

1. Tsinghua University, Beijing 100084, China

Abstract

The requirements for new generation vehicles in terms of the flight speed, thrust–weight ratio, and maneuverability necessitate the development of high performance and reliable propulsion systems where active thermal protection technology plays a crucial role. Transpiration cooling based on a microporous structure is considered as one of the most promising techniques for protecting the high heat flux walls from ablation in aerospace applications. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate three-dimensional (3D) porous structures with customized geometries that are specific to applications, i.e., in terms of the design of features such as the pore diameter, pore density, porosity, and pore morphology. Three major AM technologies (selective laser melting, inkjet, and stereolithography) followed by a post-printing process have been proposed for the additive manufacture of porous structures. In particular, 3D-printed porous structures have great promise for transpiration cooling applications. In this review, we discuss the detailed steps of porous structure topology design and a general framework is presented for AM. The heat transfer and strength performance are also provided for porous parts fabricated by AM. Furthermore, the applications of 3D-printed porous media in transpiration cooling with different regimes are described. This review concludes by explaining the current challenges and prospects for the next generation of 3D-printed porous structures in transpiration cooling systems.

Publisher

Global Power and Propulsion Society

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3