An improved reduced order model for bladed disks including multistage aeroelastic and structural coupling

Author:

Schwerdt Lukas1ORCID,Maroldt Niklas2,Panning-von Scheidt Lars1,Wallaschek Joerg1ORCID,Seume Joerg2ORCID

Affiliation:

1. Leibniz University Hannover, Institute of Dynamics and Vibration Research, An der Universität 1, 30823 Garbsen, Germany

2. Leibniz University Hannover, Institute of Turbomachinery and Fluid Dynamics, An der Universität 1, 30823 Garbsen, Germany

Abstract

To assess the influence of mistuning on the vibration amplitudes of turbomachinery rotors, reduced order models (ROMs) are widely used. A variety of methods are available for single-stage configurations and mostly aeroelastic effects can be taken into account. More recent research focusses on extending these methods to include multiple stages. However, due to the significantly increased computational effort of the aeroelastic simulations when adding more stages to the models, these ROMs are rarely applied with the inclusion of multistage aeroelastic effects. It is therefore desirable to develop reduction methods which minimize the number of these simulations to reduce the computational cost and thereby enable analyses of rotors with multiple stages including aeroelastic effects. In this paper, a cyclic Craig-Bampton reduction method with an a priori interface reduction for multistage rotors is extended with an additional a posteriori interface reduction to reduce the number of aeroelastic simulations necessary for a given accuracy level of the ROM. The interface degrees of freedom between stages are reduced using a modified version of Characteristic Constraint Modes, to yield a more efficient representation of their displacements while retaining their monoharmonic nature. The method is applied to a two-stage axial compressor with full aeroelastic coupling between the stages and its reduced computational effort is demonstrated. Additionally, two sorting methods for the degrees of freedom (DOFs) of the ROM are compared.

Publisher

Global Power and Propulsion Society

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3