Automated detection of hot-gas path defects by Support Vector Machine based analysis of exhaust density fields
Author:
Affiliation:
1. Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, An der Universitaet 1, 30823 Garbsen, Germany
2. IAV GmbH, Rockwellstrasse 16, 38518 Gifhorn, Germany
Abstract
Publisher
Global Power and Propulsion Society
Link
https://journal.gpps.global/pdf-137952-67069
Reference35 articles.
1. Methodology for evaluating hot gas path defects in an exhaust jet
2. Numerical Evaluation of the Condition of a Jet Engine Through Exhaust Jet Analysis
3. Neural networks for monitoring of engine condition data
4. Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenströmungen;Franke M.,2005
5. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep and Machine Learning-based Methods for Defect Classification in Jet Engines;2023 Intermountain Engineering, Technology and Computing (IETC);2023-05-12
2. Temperature field reconstruction method for aero engine exhaust using the colored background oriented Schlieren technology;Optoelectronics Letters;2022-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3