Leaf mineral element content and soil characteristics on in vitro antioxidant and enzymatic inhibitory activities of aqueous fennel extracts
-
Published:2021-03-04
Issue:
Volume:
Page:73
-
ISSN:2079-0538
-
Container-title:Emirates Journal of Food and Agriculture
-
language:
-
Short-container-title:Emir J Food Agric
Author:
Majdoub Nesrine,Guendouz Soukaina el,Carlier Jorge,Costa Clara,Guerrero Carlos Alberto Correia,Duarte João,Migue Maria Graça
Abstract
This study was conducted to evaluate the biochemical characterization of three harvested Foeniculum vulgare plants collected from two bioclimatic zones in order to investigate the soil growing conditions effect. The results showed a great variability of the phenolic amounts and biological properties of samples rely on localities. FvSEN contained the highest amounts of phenolic compounds. These amounts were accompanied by the greatest antioxidant ability through almost studied assays. FvSEN and FvZO were significantly different. In addition, the samples exhibited a significant and variable enzymatic inhibition activity with values ranging from 30 to 50 µg/mL for lipoxygenase assay. But these extracts did not revealed significant differences on their tyrosinase abilities. On the other hand, the levels of mineral elements were also estimated. These contents varied depending on sample and locality. The growing soil conditions of samples in terms of different parameters is likely related to their antioxidant and enzyme inhibition potentialities added to their mineral composition which settled by Spearman’s correlation. These data may confirm the interesting potential of F. vulgare as a valuable source for natural antioxidant molecules but the growing soil conditions can affect all the potentialities of these plants set for human consumption and other uses.
Publisher
Faculty of Food and Agriculture, United Arab Emirates University
Subject
Agronomy and Crop Science,Animal Science and Zoology,Applied Microbiology and Biotechnology,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献