Quality changes during thermal processing of two mixed formulas of fruits and vegetables pulps

Author:

Gonçalves Elsa M.,Raposo Isa,Pinheiro Joaquina,Alegria Carla,Moldão Margarida,Abreu Marta

Abstract

The present work aimed to evaluate, through thermal degradation kinetics (80 °C to 98 °C in time intervals of 0.5 to 25 min), the effects of different thermal treatments on the biochemical, physicochemical, sensory and microbiological parameters of two mixed fruit and vegetable pulps, a yellow and a red one. The evaluated fruit and vegetable pulps resulted from the mixture of different fruits and vegetables proportions (pineapple, beetroot, strawberry and lemon juice) added to a 50% (p/p) pear-based pulp to maximize their bioactivity, physicochemical stability and sensorial acceptance. Evaluated quality parameters included the determination of peroxidase activity (POD), pH, soluble solids content (SSC), total phenolic content (TPC), CIELab colour, sensory evaluation (colour, taste and aroma) and total mesophilic aerobic counts (TAPC). Regarding heat treatments optimization for both pulps with lower pH, it was concluded that higher temperature treatments (90 to 98 °C) applied over a shorter time (less than 5 min) were more effective to inactivate POD, to reduce the initial microbial load (>2 log10 cycles) and to maximize sensorial attributes. In both mix pulps, total phenolic content (TPC) was not significantly influenced by the different applied time-temperature binomials. From the degradation kinetic models and as an example, it was possible to conclude that POD followed a 1st order kinetic, where the temperature effect was well fitted to the Arrhenius equation. The results allowed to obtain optimized time-temperature binomials for each pulp to simultaneously achieve POD enzyme inactivation, microbial reduction, and maximization of quality parameters relatively to fresh pulps, 90 °C/5 min and 98 °C/2.5 min, for the yellow pulp and red pulp, respectively.

Publisher

Faculty of Food and Agriculture, United Arab Emirates University

Subject

Agronomy and Crop Science,Animal Science and Zoology,Applied Microbiology and Biotechnology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3