Thermodynamic characteristics of metallic glass-forming liquids

Author:

Xia Ming-Xu ,Meng Qing-Ge ,Zhang Shu-Guang ,Ma Chao-Li ,Li Jian-Guo ,

Abstract

On the basis of analyzing the thermodynamic model of regular melt, the mixing enthalpy ΔHmix and the mixing entropy ΔSmix of typical metallic glass melts were calculated. The distribution of ΔHmix vs. ΔSmix for typical metallic glasses was generalized, and a strategy for pinpointing metallic glass formers has been proposed by combining the critical cooling rate Rc based on the atomic intrinsic characteristics of the alloys including atom size, composition, and mixing enthalpy of binary systems among the components. On the condition of ΔSmix greater than 0.6 J·K-1mol-1 and ΔH less than -15 kJ·mol-1, the alloy tends to form a bulk metallic glass(BMG). It shows that Rc is intimately related with ΔSmix, and can be expressed as Rc=42.24×104 exp(-13.91 ΔSmix)+19.66. Two new glass formers, Zr40Al10Ni15Cu35, located far from the glass forming area of the existing Zr-Al-Ni-Cu BMGs with a content of 55at%—65at% zirconium, and Fe53Co5Nd12B30 of quaternary Fe-B-based BMG, were successfully prepared with this approach.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3