Author:
Lu Zhi-Peng ,Zhu Wen-Jun ,Liu Shao-Jun ,Lu Tie-Cheng ,Chen Xiang-Rong ,
Abstract
We performed first-principles calculations for the pressure-induced martensitic phase transition from the ground state ferromagnetic bcc phase to a nonmagnetic hcp phase in Fe under hydrostatic and non-hydrostatic pressure based on density-functional theory, employing the pseudopotentional and plane-wave method. The calculated results show that the magnetic moment of bcc iron under non-hydrostatic conditions decreases faster than that under hydrostatic conditions as the stress increases from 0 GPa to 18 GPa. Theoretical calculations prove that non-hydrostatic conditions can significantly reduce the bcc phase to hcp phase transition pressure. The critical stress for bcc-to-hcp transformation decreases linearly as the non-hydrostatic effect increases. The physical origins of the influence of non-hydrostatic pressure on the transition pressure are discussed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献