Ion beam etching for multilayer dielectric pulse compressor gratings with top layers of HfO2

Author:

Xu Xiang-Dong ,Liu Ying ,Qiu Ke-Qiang ,Liu Zheng-Kun ,Hong Yi-Lin ,Fu Shao-Jun ,

Abstract

Multilayer dielectric grating (MDG) is one of the key optical elements of high-power laser systems. To meet the need of MDGs for high-power laser systems, experimental investigation on MDG with a top layer of HfO2 has been carried out using Kaufman-type ion beam etcher. The optimal ion source conditions have been obtained by etching of HfO2 in pure Ar and Ar/CHF3 mixture plasmas. Compared with pure Ar plasma etching, better selectivity was achieved with Ar/CHF3. The redeposition of sidewalls effects are quite obvious during etching, which results in the increase in duty cycle of etched grating. As there is a distribution of etch rate along the direction normal to the scan movement, a special-shaped mask was made to be used as a substrate holder, which increases uniformity of the etched profile. In order to process repeatability, the ion source should be cleaned up, the cathode and neutralizer filament should be changed after etching process to full completion. Based on the above techniques, a number of MDGs have been achieved, each of which has a mean diffraction efficiency greater than 95%, a line density 1480 lines/mm, and on aperture up to 80 mm×150 mm. Experimental results agree fairly well with the designed, which provides a good reference for the large aperture MDGs ion beam etching.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3