Author:
Lü Shan-Xiang ,Feng Jiu-Chao ,
Abstract
The spectra of chaotic maps are much wider than those of chaotic flows, and their overlapped regions with Gaussian white noise are much larger, thus the denoising method for chaotic flows is unsuitable for chaotic maps. Within a semi-blind analysing framework, the parameter estimating problem for chaotic systems can be boiled down to a least square evaluating procedure. In this paper we start with estimating the evolution parameters of chaotic maps by using a least square fitting method. After that, phase space reconstruction and projection operation are employed to get noise suppression for the observed data. The simulation results indicate that the proposed algorithm surpasses the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) in denoising, as well as maintaining the characteristic quantities of chaotic maps.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献