Effect of inhomogeneous distribution of ion channels on collective electric activities of neurons in a ring network

Author:

Wu Xin-Yi ,Ma Jun ,Xie Zhen-Bo ,

Abstract

In this paper, we investigate the evolution and transition of collective electric activities of neurons in a ring network, induced by inhomogeneous distribution of ion channels. The local kinetics is measured by Morris-Lecar under voltage coupling type. In the numerical studies, the effect of inhomogeneous distribution of ion channels is simulated by changing the conductance in ion channels embedded in the membrane, and the potential mechanism is discussed. The effect of diversity of conductance between calcium and potassium ions on the activating of the adjacent neurons, and the dependence of developed travelling wave on the coupling intensity, are investigated in detail. The activating and waking up the nonexcitable or quiescent neurons with type I and type II excitability, are investigated, respectively. The numerical results confirm that the adjacent neurons are activated and the stable travelling wave is developed in the ring network of neurons when the conductance of calcium ions is increased beyond a certain threshold or the conductance of potassium ions is reduced below another threshold; while the propagation of the travelling wave could be slowed down or suppressed when the conductance of calcium ions is reduced or the conductance of potassium ion is increased. The development or emergence of travelling wave and propagation are greatly dependent on the increase of conductance of calcium ions and the decrease of potassium conductance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3