Author:
Hu Zhao-Long ,Liu Jian-Guo ,Ren Zhuo-Ming ,
Abstract
The widespread of epidemics bring tremendous losses to the mankind, thus it is very important to prevent the spread of epidemics. In this paper, the differences between individual tendency of vaccination is taken into account to propose a voluntary vaccination model based on the node degree information. Further, the theoretical analysis result shows that if propagation rate exceed a threshold value, the effectiveness of epidemic spreading (the number of infectious nodes) of the model above and the classical model ignoring the difference between the individual vaccination willingness [Zhang et al 2010 New J. Phys. 12 023015] will be the same. Both the permanent vaccination and the temporary vaccination are considered to analyze the process of epidemic spreading for the Barabási-Albert network by using the SIS model. The numerical simulation results are consistent with the empirical ones very well. Experiments prove that when the infection cost and vaccine cost is the same, the model can prevent the spread of the epidemic more effective as compared with the classical one, and the proportion of the infections decreases over 65% than the classical one. In addition, the longer the live of vaccine, the more effective the prevention of the spread of the epidemic using this model (compared with the classical model ignoring the difference between the individual vaccination willingness).
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference26 articles.
1. Ma Z N, Zhou Y C, Wang W D 2004 The mathematical modeling and research on dynamics of infectious diseases (Beijing: science press) pp1–5 (in Chinese) [马知恩, 周义仓, 王稳地 2004 传染病动力学的数学建模与研究(北京: 科学出版社) 第1–5页]
2. Meyers L A, Pourbohloul B, Newman M E J, Skowronski D M, Brunham R C 2005 J. Theor. Biol. 232 71
3. Li X, Wang X F 2006 IEEE Trans. Automat. Control 51 534
4. Liu J G, Wu Z X, Wang F 2007 Int. J. Mod. Phys. C 18 1087
5. Yu H, Liu Z, Li Y J 2013 Acta Phys. Sin. 62 020204 (in Chinese) [于会, 刘尊, 李勇军 2013 物理学报 62 020204]
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献