External electric field effect on exciton binding energy in InGaAsP/InP quantum wells

Author:

Wang Wen-Juan ,Wang Hai-Long ,Gong Qian ,Song Zhi-Tang ,Wang Hui ,Feng Song-Lin , , ,

Abstract

Exciton binding energies in InGaAsP/InP quantum well with different contents of In are calculated through variational method in the effective mass approximation. The variation of exciton binding energy as a function of well width, In content, and applied external electric field is studied. It is shown that the exciton binding energy is a non-monotonic function of well width. It increases first until reaching a maximum, and then decreases as the well width increases farther. In addition, with the increase of In content, the well width should increase to reach the maximum value of exciton binding energy. It is also found that the external electric field has little effect on binding energy, but when the electric field is large enough, it will destroy the excitonic effect. These results may provide some theoretical basis for the design and control of InGaAsP/InP optical devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3