Chaotic time series prediction using add-delete mechanism based regularized extreme learning machine

Author:

Zhao Yong-Ping ,Wang Kang-Kang ,

Abstract

Considering a regularized extreme learning machine (RELM) with randomly generated hidden nodes, an add-delete mechanism is proposed to determine the number of hidden nodes adaptively, where the extent of contribution to the objective function of RELM is treated as the criterion for judging each hidden node, that is, the large the better, and vice versa. As a result, the better hidden nodes are kept. On the contrary, the so-called worse hidden nodes are deleted. Naturally, the hidden nodes of RELM are selected optimally. In contrast to the other method only with the add mechanism, the proposed one has some advantages in the number of hidden nodes, generalization performance, and the real time. The experimental results on classical chaotic time series demonstrate the effectiveness and feasibility of the proposed add-delete mechanism for RELM.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3