Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation

Author:

Yang Huan-Huan ,Cao Xiang-Yu ,Gao Jun ,Liu Tao ,Li Si-Jia ,Zhao Yi ,Yuan Zi-Dong ,Zhang Hao ,

Abstract

We have designed and fabricated a broadband low radar cross section (RCS) metamaterial absorber with polarization-independent characteristic based on electromagnetic resonance. The absorbing mechanism is investigated by means of electric as well as magnetic field distributions and retrieval algorithm. Absorbing and RCS properties of this absorber are performed by waveguide experiment and free space measurements, respectively. Theoretical analysis indicates that the absorber can produce electric and magnetic resonances in different locations for fixed frequency, while for different frequencies, it can provide energy losses in different dielectric layers, which effectively lowers the electromagnetic couplings and consequently keep the strong absorbing properties in a wide frequency range. Experimental results show that the designed absorber with 3-layer structure achieves a frequency range which is 4.25 times as that of 1-layer absorber with absorptivity above 90%, its relative bandwidth for RCS reduction above 10dB is 5.1%. The cell size and thickness of the designed absorber are very small, i.e., 0.17 and 0.015 of the working wavelength. Thus the low-RCS property of the absorber is wide-angle and polarization-independent. In addition, the working frequency range of the absorber can be adjusted by properly designing the layers.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3