Author:
Hu Jian-Bo ,Yu Yu-Ying ,Dai Cheng-Da ,Tan Hua ,
Abstract
Steinberg-Cochran-Guinan (SCG) model, the corrected SCG model and the finite strain theory were reviewed with respect to the basic assumptions and applicability, and the shear modulus data of aluminum under shock compression predicted by these models were compared with the available data obtained in one-dimensional plate impact experiments. The comparison shows that the corrected SCG model is the best one,being capable of describing the variation of the measured shear modulus of aluminum with shock pressure, although the other two are applicable at lower pressure. It is found that the shear modulus increases gradually with the increase of shock pressure in the range of 10—80GPa due to the work-hardening effects. As the shock pressure goes above ~80GPa, the shear modulus of aluminum falls quickly due to the dominating effect of high-temperature softening, and when the shock pressure reaches ~125GPa, corresponding to the onset of melting on Hugoniot, the shear modulus of aluminum decreases to zero.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献