Quantum signature for designated verifier with strong security

Author:

Rong Min-Xi,Xin Xiang-Jun,Li Fa-Gen, ,

Abstract

Most of the classical designated verifier signature schemes are insecure against quantum adversary. In this paper, a quantum signature scheme for the designated verifier is proposed. In our scheme, during the initialization phase, the partners share secret keys by performing the quantum key distribution protocol. On the other hand, by performing the quantum direct communication protocol, the key generator center shares secret keys with the signer and the designated verifier, respectively. The key generator center generates a particle sequence of Bell state and distributes the particles between the signer and the designated verifier. During the signature generation phase, the signer encrypts the particle sequence by the secret keys and Hardmard operators. After that, the signer performs the controlled unitary operations on the encrypted particle sequence so as to generate the quantum signature. The designated verifier can simulate the quantum signature by performing the same symmetric signing steps as that performed by the original signer. Hence, the quantum signature signed by the true signer is the same as the one simulated by the receiver, which makes our scheme possess the designated properties. During the signature verification phase, the designated verifier performs the controlled unitary operations on the quantum signature and obtains the quantum ciphertexts. After that, the designated verifier decrypts the quantum ciphertexts by the symmetric secret keys and Hardmard operators so that the quantum signature can be verified. Our signature is secure against forgery attack, inter-resending attacks and Trojan horse attack. Because the trace distance between the density operators of different quantum signatures is zero, the information-theoretical security of our quantum signature scheme can be proved. The unconditionally secure quantum key distribution protocol and the one-time pad encryption algorithm can guarantee the security of the secret keys shared by the partners. What is more, the security assumption about the key generation center is weak. That is, it is not necessary to assume that the key generation center should be fully trusted. On the other hand, in our scheme, the quantum one-way function is not used. To generate a quantum signature, the signer need not prepare for entangled particle sequence. To verify a quantum signature, the verifier need not apply any state comparison to the received particles. The qubit efficiency is 100%. Therefore, our scheme has the advantages in the security and efficiency over the other quantum signature schemes for the designated verifier.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference46 articles.

1. Diffie W, Hellmann M 1976 IEEE IT 22 644

2. Saeednia S, Kremer S, Markowitch O 2003 Information Security and Cryptology-ICISC Seoul, Korea, November 27–28, 2003 p40

3. Ray I, Narasimhamurthi N 2001 Proceedings of the 3rd international workshop on advanced issues of E-commerce and web-based information systems San Juan, CA, USA, June 21–22, 2001 p188

4. Schoenmakers B 1999 Advances in CRYPTO’99 Santa Barbara, California, USA, August 15–19, 1999 p148

5. Huang X, Mu Y, Susilo W, Wu W 2007 Proceedings of 1st International Conference on Pairing-Based Cryptography, Pairing 2007 Tokyo, Japan, July 2–4, 2007 p367

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Designated Multi- verifier Signature;International Journal of Theoretical Physics;2024-01-09

2. Quantum designated verifier signature without third party;Quantum Information Processing;2023-12-18

3. Bell state-based semi-quantum signature scheme with arbitrator;Optical and Quantum Electronics;2023-12-13

4. Bi-directional semi-quantum secure direct communication protocol based on high-dimensional single-particle states;Acta Physica Sinica;2022

5. Quantum public-key designated verifier signature;Quantum Information Processing;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3