In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction

Author:

Chen Xiao-Hui,Tan Bo-Zhong,Xue Tao,Ma Yun-Can,Jin Sai,Li Zhi-Jun,Xin Yue-Feng,Li Xiao-Ya,Li Jun, ,

Abstract

The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than <inline-formula><tex-math id="M2">\begin{document}$ {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.png"/></alternatives></inline-formula>. However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate (<inline-formula><tex-math id="M3">\begin{document}$ > {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.png"/></alternatives></inline-formula>) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an <i>in situ</i> X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The <i>in situ</i> observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in <i>in situ</i> X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of <inline-formula><tex-math id="M4">\begin{document}$ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.png"/></alternatives></inline-formula>. The available of the presented <i>in situ</i> X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3