In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction
-
Published:2020
Issue:24
Volume:69
Page:246201
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Chen Xiao-Hui,Tan Bo-Zhong,Xue Tao,Ma Yun-Can,Jin Sai,Li Zhi-Jun,Xin Yue-Feng,Li Xiao-Ya,Li Jun, ,
Abstract
The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than <inline-formula><tex-math id="M2">\begin{document}$ {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M2.png"/></alternatives></inline-formula>. However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate (<inline-formula><tex-math id="M3">\begin{document}$ > {10^{6}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M3.png"/></alternatives></inline-formula>) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an <i>in situ</i> X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The <i>in situ</i> observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in <i>in situ</i> X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of <inline-formula><tex-math id="M4">\begin{document}$ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20200929_M4.png"/></alternatives></inline-formula>. The available of the presented <i>in situ</i> X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference31 articles.
1. Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701 2. Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507 3. Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108 4. Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927 5. Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|