Magnetic field propagation model of low frequency/very low communication based on mechanical antenna of electret

Author:

Wang Chen,Cui Yong,Song Xiao,Yuan Hai-Wen,

Abstract

<sec>Because of its stable propagation characteristics and small attenuation in the medium, low-frequency (LF) electromagnetic wave can penetrate into the sea and underground with small loss. Although its transmission bandwidth is narrow, which limits its application range, it has irreplaceable wide applications in long-distance navigation, communication and frequency release, especially in underwater communication. Therefore, the study of low frequency/very low frequency (LF/VLF) propagation is of great theoretical and military value. In the LF/VLF communication systems, the transmitting antenna is an extremely important part, and its performance has an important influence on the whole system. However, the wavelength of the LF electromagnetic wave is very long. In order to obtain the ideal radiation effect, the traditional method needs a huge transmitting antenna system, which is too large in size and power consumption. Therefore, it will be a disruptive innovation in the field to realize a technology that can significantly reduce the size the existing LF/VLF information network communication system. </sec><sec>In view of this, in this paper we propose a kind of LF/VLF signal transmitting antenna in which an excitation device is used to drive the polarization charge of the electret to move mechanically. By accelerating the charge to form a conductive alternating electromagnetic field which can generate and radiate electromagnetic wave, under the excitation of the wave source, it carries the energy and information in the form of energy flow and propagates in a certain medium. Then, through using the magnetic field receiving system to measure the magnetic field vector in the electromagnetic wave, the effective LF/VLF signal can be obtained, thus achieving the high electromagnetic wave effective radiation which overturns the restriction that the antenna size needs to be comparable to the wave length of the radiation signal in the traditional LF navigation communication system. At the same time, an analytical model of magnetic field propagation is established based on this structure, and the influence of antenna size, shape and other relevant parameters on the performance of antenna communication are studied as well. In order to reduce the loss of accuracy and improve the calculation speed, it is necessary to choose the correct analytical model and the appropriate parameters of magnetic field generated by the mechanical antenna according to the actual situation. The research work is of great significance for designing and optimizing mechanical antennas.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Tao W, Chen D D, He N N 2015 Communication Technology 48 375
陶雯, 陈鼎鼎, 何宁宁 2015 通信技术 48 375

2. Lu J X 2002 Modern Military Communication 10 28
陆建勋 2002 现代军事通信 10 28

3. Mark A K, Matt F, Andy H, Erik J, Matthew T W, Michael K, Robert S 2019 Nat. Commun. 10 1715

4. Valter P, Alessio D A, Marco D, Guido D A, Antonio M, Paolo C 2015 IEEE Trans. Ind. Electron. 63 2457

5. Bickford J A, McNabb R S, Ward P A, Freeman D K, Weinberg M S 2017 Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1475

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3