Dynamics of ring dark solitons in Bose-Einstein condensates

Author:

Guo Hui,Wang Ya-Jun,Wang Lin-Xue,Zhang Xiao-Fei, , ,

Abstract

Soliton is an exotic topological excitation, and it widely exists in various nonlinear systems, such as nonlinear optics, Bose-Einstein condensates, classical and quantum fluids, plasma, magnetic materials, etc. A stable soliton can propagate with constant amplitude and velocity, and maintain its shape. Two-dimensional and three-dimensional solitons are usually hard to stabilize, and how to realize stable two-dimensional or three-dimensional solitons has aroused the great interest of the researchers. Ring dark soliton is a kind of two-dimensional soliton, which was first theoretically predicted and experimentally realized in nonlinear optical systems. Compared with the usual two-dimensional solitons, ring dark solitons have good stability and rich dynamical behaviors. Owing to their highly controllable capability, Bose-Einstein condensates provide a new platform for studying the ring dark solitons. Based on the recent progress in Bose-Einstein condensates and solitons, this paper reviews the research on the analytic solutions, stability, as well as the decay dynamics of ring dark solitons in Bose-Einstein condensates. A transform method is introduced, which generalizes the analytic solutions of ring dark solitons from a homogeneous system with time-independent nonlinearity to a harmonically trapped inhomogeneous system with time-dependent nonlinearity. The stability phase diagram of the ring dark soliton under deformation perturbations is discussed by numerically solving the Gross-Pitaevskii equations in the mean-field theory. A method of enhancing the stability of ring dark solitons by periodically modulating the nonlinear coefficients is introduced. It is also shown that the periodically modulated nonlinear coefficient can be experimentally realized by the Feshbach resonance technology. In addition, we discuss the dynamics of the decay of ring dark solitons. It is found that the ring dark soliton can decay into various vortex clusters composed of vortices and antivortices. This opens a new avenue to the investigation of vortex dynamics and quantum turbulence. It is also found that the ring dark solitons combined with periodic modulated nonlinearity can give rise to the pattern formation, which is an interesting nonlinear phenomenon widely explored in all the fields of nature. Finally, some possible research subjects about ring dark solitons in future research are also discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3