Author:
Chen Wei,Guo Yuan,Jing Shi-Wei,
Abstract
Many image compression and encryption algorithms based on traditional compressed sensing and chaotic systems are time-consuming, have low reconstruction quality, and are suitable only for grayscale images. In this paper, we propose a general image compression encryption algorithm based on a deep learning compressed sensing and compound chaotic system, which is suitable for grayscale images and RGB format color images. Color images can be directly compressed and encrypted, but grayscale images need copying from 1 channel to 3 channels. First, the original image is divided into multiple 3 × 33 × 33 non-overlapping image blocks and the bilinear interpolation Bilinear and convolutional neural network are used to compress the image, so that the compression network has no restriction on the sampling rate and can obtain high-quality compression of image. Then a composite chaotic system composed of a two-dimensional cloud model and Logistic is used to encrypt and decrypt the compressed image (sliding scrambling and vector decomposition), and finally the decrypted image is reconstructed. In the reconstruction network, the convolutional neural network and bilinear interpolation Bilinear are mainly responsible for reconstructing the contour structure information, and the fully connected layer is mainly responsible for reconstructing and combining the color information to reconstruct a high-quality image. For grayscale images, we also need to calculate the average value of the corresponding positions of the 3 channels of the reconstructed image, and change the 3 channels into 1 channel. The experimental results show that the general image encryption algorithm based on deep learning compressed sensing and compound chaos system has great advantages in data processing quality and computational complexity. Although in the network the color images are used for training, the quality of grayscale image reconstruction is still better than that of other algorithms. The image encryption algorithm has a large enough key space and associates the plaintext hash value with the key, which realizes the encryption effect of one image corresponding to one key, thus being able to effectively resist brute force attacks and selective plaintext attacks. Compared with it in the comparison literature, the correlation coefficient is close to an ideal value, and the information entropy and the clear text sensitivity index are also within a critical range, which enhances the confidentiality of the image.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference22 articles.
1. Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289
2. Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489
3. Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21
4. Mousavi A, Patel A B, Baraniuk R G 2015 53rd Annual Allerton Conference on Communication, Control, and Computing Monticello, USA, September 29–October 2, 2015 p1336
5. Lian Q S, Fu L P, Chen S Z, Shi B S 2019 Acta Autom. Sin. 45 2082
练秋生, 富利鹏, 陈书贞, 石保顺 2019 自动化学报 45 2082
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献