Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes

Author:

Zhang Ya-Nan,Zhan Nan,Deng Ling-Ling,Chen Shu-Fen, , ,

Abstract

Localized surface plasmon resonance (LSPR) effect of metal nanoparticles (MNs) has been widely applied in organic light-emitting diodes (OLEDs) to improve the radiation of excitons. The LSPR wavelength and intensity of MNs and the coupling between MNs and excitons greatly affect the LSPR effect on exciton radiation. In this work, silica coated silver nanocubes (Ag@SiO<sub>2</sub> NCs) were doped in the electron transport layer (ETL) of a solution-processed multilayered white OLED (WOLED). Due to the sharp edges and corners, Ag NCs have strong LSPR effect and can effectively enhance the radiation of nearby excitons. With an appropriate concentration of Ag@SiO<sub>2</sub> NCs, the WOLED achieved two fold improvement in the current efficiency comparing with the control device without Ag@SiO<sub>2</sub> NCs incorporated. The working mechanism of the Ag@SiO<sub>2</sub> NCs based WOLED was investigated in detail. For the solution-processed OLED, excitons usually form and recombine near the interface of emission layer and electron transport layer (EML/ETL) because the commonly used host material (such as polyvinylcarbazole, PVK) has the unipolar hole transport property. So the Ag@SiO<sub>2</sub> NCs in ETL greatly enhanced the radiation of the excitons located near the EML/ETL interface, which mostly contributed to the performance enhancement of the Ag@SiO<sub>2</sub> NCs based WOLED. Study on a group of devices with Ag@SiO<sub>2</sub> NCs doped in different locations indicated that Ag@SiO<sub>2</sub> NCs in ETL showed more effective LSPR effect than those in hole injection layer. Electroluminescence and photoluminescence spectra of the WOLEDs declared that the Ag@SiO<sub>2</sub> NCs simultaneously improved the radiation intensities of the blue and yellow excitons and helped the WOLED maintain the good chromaticity stability, which was mainly attributed to the wide LSPR wavelength range (450–650 nm) of the Ag@SiO<sub>2</sub> NCs. The SiO<sub>2</sub> coating layer of the Ag@SiO<sub>2</sub> NCs played the important role in the LSPR enhanced emission. On the one hand, it formed an appropriated distance between the Ag NCs and the extions, helping to generate the strong coupling between them. On the other hand, it suppressed the effect of Ag NCs on charge trapping, keeping the stability of the carrier transport in the device. Our research demonstrate MNs can effectively improve the performance of OLEDs by carefully designing the device structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3