Mechanical behaviors of radial symmetric pyramid kirigami

Author:

Xiao Si,Qin Ying-Lin,Wang Hui,Wang Peng,Ma Hai-Ming,He Jun,Wang Ying-Wei, ,

Abstract

Kirigami, the art of cutting paper, recently emerged as a powerful tool to substantially modify, reconfigure and program the properties of material. The development of kirigami technology provides an effective solution for designing the inorganic flexible electronic devices. Pyramid kirigami, as a kind of kirigami structure, shows a large vertical extension characteristic. It has been widely used to demonstrate versatile applications, such as graphene kirigami spiral spring, three-dimensional stretchable supercapacitor, and wearable flexible sensors. In the present work, we construct a polygonal radial symmetric pyramid kirigami by introducing some cuts in the elastic sheet. The mechanical behavior of pyramid kirigami is investigated based on the cantilever formula solved by Galerkin method. In addition, a “beam model” is proposed to explain deformation process of pyramid kirigami, which consists of several “beam elements” containing two cantilever beams. The formula for the relationship between the elastic coefficient <i>K</i> and the structural parameters of the regular <i>N</i>-sided pyramid kirigami of <i>n</i> modules is obtained by combining several cantilever beams. The formula for the linear threshold of deformation <i>D</i><sub>T</sub> is obtained based on the comparison between the approximate curve of small deflection and the theoretical curve of a cantilever beam. When the deformation of the structure exceeds the linear threshold, the structure cannot keep the elastic coefficient <i>K</i> value linear any more, and the mechanical behaviors become non-linear. The simple geometric relationship of a single module is used to explain the out-of-sheet distortion of the structure. The proposed theoretical model is confirmed by finite element method simulation and experimental methods, and it is used to analyze the mechanical characteristics of graphene krigami reported. The results indicate that the defined parameters can be adjusted to tailor or manipulate the ductility and mechanical behaviors. This work provides theoretical support for the application of pyramid kirigami in the field of flexible devices. In the macroscopic field, the pyramid kirigami structure is expected to be applied to the field of flexible devices as a flexible structure with controllable elastic coefficient. In the microscopic field, it is expected to use two-dimensional materials to make force measurement devices with a simple visual readout and femtonewton force resolution.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3