Filter cavity design and length measurement for preparing Schrödinger cat state

Author:

Zhai Ze-Hui,Hao Wen-Jing,Liu Jian-Li,Duan Xi-Ya,

Abstract

Optical Schrödinger cat state is not only one of the basic elements of quantum mechanics, but also a pivotal resource of continuous-variable quantum information. The non-Gaussian operation in its preparation can also be a key technology in distilling continuous-variable squeezing and entanglement. In the experimental preparation, a small part of a beam of vacuum squeezing is separated and detected as the trigger of appearance of Schrödinger cat state. Filter operation in the trigger optical path is important since it affects dark counts of single photon detector, frequency mode matching of trigger mode and signal mode, and preparing rate of the Schrödinger cat state, etc. In this paper, we describe the design of optical filter in the trigger path and the measurement of the filter cavity length. According to the design, filter cavity length <inline-formula><tex-math id="M4">\begin{document}$ {l_{{\rm{FC}}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M4.png"/></alternatives></inline-formula> should satisfy <inline-formula><tex-math id="M5">\begin{document}$ {\rm{189}}\;{\text{μm}} > {l_{{\rm{FC}}}} > {\rm{119}}\;{\text{μm}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M5.png"/></alternatives></inline-formula>. This cavity length is too small to be measured with a ruler. To measure the cavity length, we introduce an optical method, in which Gouy phases of Hermite Gaussian transverse modes TEM<sub>00</sub> and TEM<sub>10</sub> are used. When the cavity length is scanned, resonant peaks and the corresponding scanning voltages are recorded. From theoretical derivation, the cavity length is related to the filter cavity piezo response to the scanning voltage <inline-formula><tex-math id="M6">\begin{document}$ {\varPsi '_{\rm{G}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M6.png"/></alternatives></inline-formula>, the slope rate of piezo scanning voltage <inline-formula><tex-math id="M7">\begin{document}$ U'$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M7.png"/></alternatives></inline-formula>, and the time distance between TEM<sub>00</sub> and TEM<sub>10</sub> resonant peaks <inline-formula><tex-math id="M8">\begin{document}$ \Delta t$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M8.png"/></alternatives></inline-formula>. The finally measured cavity length is <inline-formula><tex-math id="M9">\begin{document}${l_{{\rm{FC}}}} = ({\rm{141}} \pm 28)~{\text{μm}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M9.png"/></alternatives></inline-formula>, which satisfies the design requirement. The measurement error mainly originates from inaccurate fitting of <inline-formula><tex-math id="M10">\begin{document}$ {\varPsi '_{\rm{G}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M10.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ U'$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M11.png"/></alternatives></inline-formula>, and readout error of <inline-formula><tex-math id="M12">\begin{document}$ \Delta t$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M12.png"/></alternatives></inline-formula>. It is shown that the error of <inline-formula><tex-math id="M13">\begin{document}$ {\varPsi '_{\rm{G}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M13.png"/></alternatives></inline-formula> is dominant since less data are used in the curve fitting. The measurement error is expected to be reduced if much more data of piezo response to scanning voltage are collected and used to fit <inline-formula><tex-math id="M14">\begin{document}$ {\varPsi '_{\rm{G}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="18-20200589_M14.png"/></alternatives></inline-formula> with higher order polynomials. The proposed measurement method of short cavity length needs neither wide tuning laser nor any peculiar instrument, and does not depend on any dispersion property of the cavity, and hence it has a certain generality. It can be hopefully used in many other optical systems, such as cavity quantum electrodynamics, where ultrashort cavity plays a central role.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3