Author:
Wang Yu-Jia,Geng Wan-Rong,Tang Yun-Long,Zhu Yin-Lian,Ma Xiu-Liang, ,
Abstract
In this paper, the recent progress of ferroelectric topologies is briefly reviewed with the emphasis on the important role of state-of-the-art aberration-corrected transmission electron microscopy in revealing the topological features in nanoscale ferroelectric materials. By identifying the ion displacement at a sub-angström level, the corresponding polarization distribution can be determined which uncovers the characteristics of topological structures. The formation mechanisms of ferroelectric topological structures and their evolutions under external fields are summarized from the perspective of strain, screening, and external fields for two prototypical ferroelectric materials, PbTiO<sub>3</sub> and BiFeO<sub>3</sub>. For the PbTiO<sub>3</sub>, its topological structures such as flux-closures, vortices, bubbles, skyrmions, and merons can be well demonstrated in a thickness-strain-screening phase diagram, which could be a guideline for better understanding the topological structures and also for the future exploration. For BiFeO<sub>3</sub>, its topological structures reported are classified as two categories: one is the unscreened topological structure such as vortices and the other is the screened topological structure (center-type domains). Finally, we present the prospects for the future development of the ferroelectric topologies.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献