Author:
Liu Zhe,Wang Lei-Lei,Shi Peng-Peng,Cui Hai-Hang, , , ,
Abstract
Adding nanoparticles with high light response characteristics to a light-transmitting fluid medium can form a light-driven nanofluid and achieve efficient use of light energy. This paper conducts the experimental observation and theoretical analysis of the light driven nanofluid flow behavior, which is the theoretical basis for achieving the precise control of optical drive nanofluid. To realize the efficient conversion of light energy into kinetic energy, here, the motion of Fe<sub>3</sub>O<sub>4</sub> particles with a diameter of 300 nm in droplets induced by the Marangoni effect is studied under different light sources by using the particle image velocimetry (PIV). The experimental results show that when the number density of particles is higher than the critical value, the vertical vortices with symmetrical structure can be induced. At the bottom of the droplet, the particles move from the periphery to the center of droplet, and at the top of the droplet, the particles move from the center to the periphery of droplet. In addition, the frequency of light source and the number density of particles are the dominant factors in this process. Subsequently, for the light driven nanofluid experiment in this paper, the analytical solution of the flow field distribution is achieved by using the Stokes equation and the surface tension gradient boundary condition. The analytical solution of the flow field distribution obtained here is consistent with the experimental results, confirming the validity of the quantitative theory. Finally, the correlation between various driving modes, including surface tension at the top surface, surface pressure at the bottom surface or concentrated light radiation force in bulk phase, is discussed. This research provides theoretical support for the precise regulation of flow behavior and efficient conversion of light energy in the optical microfluidic system.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献