Migration characteristics of droplet condensation on end surface of single-finger microgripper

Author:

Fan Zeng-Hua,Rong Wei-Bin,Liu Zi-Xiao,Gao Jun,Tian Ye-Bing, ,

Abstract

Liquid droplet is a prerequisite for micro-robot based on liquid medium. The investigation of the migration characteristics of condensed droplets on the end surface of a single-finger microgripper is of significance for obtaining stable droplets. The principle of flexible operation for micro-components using droplet condensation is analyzed first. The liquid bridge force acting on a microsphere is derived. A growth model of condensed droplet on the tip of a single-finger microgripper is established, including single-droplet growth, droplet coalesce, droplet movement, and pining effect. Condensation process on the tip of single-finger microgripper with a diameter of 130-400 μm is observed experimentally. Small droplets are formed by directly growing with a big growth rate in the initial stage, then the droplet growth is determined by droplet coalesce. The experimental results show that a single droplet is formed on the end surface after direct growth and droplets coalesce. The maximum droplet volume of 5.5 nL appears on the tip of a single-finger actuator with a diameter of 400 μm under the conditions of surface temperature of –5 °C, room temperature of 24 °C and humidity of 37%. The stability of the formed droplets is dominated by temperature gradients and edge effects during growth process. The distribution of condensed droplets is asymmetric while the microgripper is placed on a cooling surface with temperature gradient. A big growth rate is shown in a low temperature range. A single asymmetric droplet with an offset of 13 μm with respect to the axis of the actuator is formed, which is caused by the temperature gradient. A stable contact angle of 112° is obtained on the end surface of a single-finger microgripper with a diameter of 137 μm because of edge effect using the ambient temperature of 24 °C and humidity of 42%. Condensed droplets located on the end surface of hydrophobic microgripper are more stable than the untreated microgripper. Compared with the droplet formation (0.3 nL) on an untreated microgripper with a diameter of 150 μm, a lager stable droplet of 0.4 nL is obtained on the end face of a small microgripper with a diameter of 130 μm because of the hydrophobic action. The validity of theoretical analysis is verified by experimental results. The experimental investigation of the migration characteristics of condensed droplets on the end surface of a single-finger microgripper shows that the droplet shape can be changed by adjusting the temperature gradient and hydrophilic/hydrophobic performance, which plays an important role in achieving a stable droplet on the end surface.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3