Time delay signature and bandwidth of chaotic laser output from semiconductor laser

Author:

Zhang Yi-Ning,Feng Yu-Ling,Wang Xiao-Qian,Zhao Zhen-Ming,Gao Chao,Yao Zhi-Hai,

Abstract

<sec> Semiconductor laser (SL) can output chaotic lasers under external disturbances such as optical injection or optical feedback, and the bandwidth can reach up to GHz magnitude. External-cavity feedback semiconductor lasers can output high-dimensional chaotic lasers and are considered to be better sources of chaotic entropy. However, due to external cavity feedback and other effects, it will give rise to obvious external cavity time delay signature (TDS) in the output chaotic laser, which restricts the application of chaotic lasers. On the other hand, the bandwidth of chaotic laser determines the transmission rate of confidential communication, and therefore TDS and bandwidth are two important parameters that will affect chaotic laser’s applications. Therefore, it is significant to take appropriate measures to suppress the TDS and increase the bandwidth of chaotic laser output by semiconductor laser. </sec><sec> In this paper the output laser from a semiconductor laser with single optical feedback is partially injected to another semiconductor laser with double filtered optical feedback. Thus they form a semiconductor laser system with external optical injection and double filtered optical feedback, i.e. a master-slave laser system which is used to suppress the TDS of chaotic laser and investigate its bandwidth. We numerically investigate the influences of external light injection coefficient, feedback intensity, pumping factor, and filter bandwidth on TDS. Then the suppression effects of this system on TDS are analyzed and compared with those of semiconductor laser system with external optical injection and single optical feedback, those of semiconductor laser system with external optical injection and double optical feedback, those of semiconductor laser system with external optical injection and single filtered optical feedback, and those of semiconductor laser system with double filtered optical feedback. The results show that the proposed scheme in this paper has the best suppression effect on TDS. Then the bandwidth of the chaotic laser output from the system is investigated under the condition of parameters of effectively suppressing TDS. The results show that the system proposed in this paper can increase the bandwidth of the system output chaotic laser by properly selecting the parametric values, and the maximum bandwidth value of the obtained chaotic laser is about 8.8 GHz. The above investigations indicate the effectiveness of the proposed scheme. The results of this investigation are significant for the application of chaotic lasers. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference38 articles.

1. Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181

2. Lin F Y, Liu J M 2003 Opt. Commun. 221 173

3. Senlin Y 2009 J. Opt. Commun. 30 20

4. Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

5. Zhang M J, Liu T G, Zheng J Y, Wang A B, Wang Y C 2011 Chin. J. Lasers 4 136
张明江, 刘铁根, 郑建宇, 王安帮, 王云才 2011 中国激光 4 136

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3