Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact

Author:

Li Ying-Han,An Zhu,Zhu Jing-Jun,Li Ling,

Abstract

In this paper, pure thick Al (Z = 13), Ti (Z = 22), Zr (Z = 40), W (Z = 74) and Au (Z = 79) targets are bombarded by electrons in an energy range of 5–27 keV, and the experimental thick-target characteristic X-ray yields of K-shell and L-shell, the X-ray production cross sections and the ionization cross sections of inner shells are presented. The present experimental setup and data processing are improved, specifically, a deflection magnet is installed in front of the X-ray detector to prevent the backscattered electron from entering into the X-ray detector, and the bremsstrahlung background spectra calculated from PENELOPE Monte Carlo simulations are used to deduce the net peak areas. The X-ray detector used in this experiment is the XR-100SDD manufactured by Amptek Inc. with a 25 mm<sup>2</sup> C2 ultra-thin window which can detect the low-energy x-rays down to boron Kα line (0.183 keV). Standard sources (<sup>55</sup>Fe, <sup>57</sup>Co, <sup>137</sup>Cs and <sup>241</sup>Am) with an activity accuracy range of 1%–3% (<i>k</i> = 2), supplied by the Physikalisch-Technische Bundesanstalt, Germany (PTB), are used to perform the detector’s efficiency calibration, and in a low-energy range (< 3.3 keV) the efficiency calibration is accomplished by measuring characteristic X-ray spectra produced by 20 keV electron impacting various thickness solid targets (i.e. by the characteristic peak method). The uncertainty of the detector’s efficiency calibration obtained in this paper is ~1.6%. The experimental thick-target characteristic X-ray yield data with an uncertainty of 1.7%–6.2% are compared with the PENELOPE Monte Carlo simulations, in which the inner-shell ionization cross sections are based on the distorted-wave Born approximation (DWBA) calculations, and they are in good agreement with a difference of less than or ~10%. According to the measured thick-target characteristic x-ray yields, the K-shell ionization cross sections for Al, Ti and Zr and the L-shell X-ray production cross sections for Zr, W and Au are also obtained with an uncertainty of 5%–8% (except for Al due to large K-shell fluorescence yield uncertainty), the difference between the experimental and theoretical data is also less than or ~10%. Moreover, by comparing the thick-target characteristic X-ray yields obtained from the analytical model and the PENELOPE Monte Carlo simulations at the electrons’ incident angles of 45° and 90°, it is found that the degree of agreement between the results from the analytical model and the Monte Carlo simulations at the incident angle of 90° is better than at the incident angle of 45°. Moreover, the contributions of the secondary electrons and bremsstrahlung photons to the characteristic X-ray yield are also given based on the PENELOPE Monte Carlo simulations. As for the elements studied in this paper, for the low ionization threshold energy, the contribution of the secondary electrons is ~2%, and however, for the high ionization threshold energy, the contribution is ~10%–20%. These contributions depend weakly on the energy of the incident electrons and show that these contributions are closely correlated with atomic number.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference39 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3