Surface-textured polymer microspheres generated through interfacial instabilities of microfluidic droplets for cell capture

Author:

Wang Yue-Tong,Shang Luo-Ran,Zhao Yuan-Jin, ,

Abstract

Polymer microparticles with various compositions and morphologies have recently received much attention. Their surface-roughness significantly affects the physical and chemical properties, which especially counts in regulating the interaction between biological materials and living systems. In this paper, we design a polystyrene microsphere with controllable surface textures. At first, a microfluidic device is used to generate droplets with uniform size containing the hydrophobic polymer and a co-surfactant. During the volatilization of the organic solvent, the shrinking droplets appear to be unstable at the interface. Thus, the surface area increases spontaneously, and microspheres with wrinkles on the surface are obtained after being solidified. The results show that tuning the concentration of the co-surfactant and the rate of solvent evaporation can effectively regulate the surface roughness of the microspheres. Circulating tumor cell capture experiments reveal that this textured structure can facilitate the cell adhesion and increase the number of the captured cells. These features indicate that the coarse microspheres possess a promising application prospect in the field of biomedical analysis.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3