Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication

Author:

Zhang Ji-Ye,Zhang Jian-Wei,Zeng Yu-Gang,Zhang Jun,Ning Yong-Qiang,Zhang Xing,Qin Li,Liu Yun,Wang Li-Jun, ,

Abstract

<sec> The vertical external cavity surface emitting laser (VECSEL) is one of the hottest research fields of semiconductor lasers, due to its high power and good beam quality. However, there are few reports about how to systematically design the active region of VECSEL. In this paper, the gain design of quantum wells, which are the most important region within the VECSEL, is carried out. </sec><sec> To achieve low power consumption under high temperature condition, epitaxial structure of the VECSEL is optimized by using the commercial software PICS3D. Firstly, the relationship between the structure of quantum well and the gain is simulated by the <i>k</i>·<i>p</i> method. Then, the gain spectra of quantum wells at different carrier densities and temperatures are compared with each other, and the optimal composition and thickness of quantum well are thus determined. The temperature drift coefficient is 0.36 nm/K, obtained by simulating the drift of the gain peak wavelength at the working temperature. Finally, the gain spectra of quantum wells with five different barriers are compared with each other. The slight blue shift of the gain peak in the quantum well with five different barriers accommodates the different emission thermal drifts of the quantum well at high temperature operation. With the GaAsP barriers on both sides of quantum well the gain characteristics of quantum wells can be improved efficiently. </sec><sec> The designed structure is deposited by the MOCVD system. According to the reflection spectrum of the gain chip, measured by ellipsometer, the stop-band over 100 nm is centered at the about 970 nm wavelength, confirming accurate growth of the VECSEL. The 808 nm pump laser is focused on the surface of VECSEL chip at an incident angle from 30° to 50°. The VECSEL light-light characteristics are tested under the output coupling mirror with different reflectivity. The output power of VECSEL with a 97.7% reflectance output coupling mirror reaches 9.82 W at the pumping power of 35 W, without saturating the power curve. By using the external mirrors with different reflectivity, there appears the wavelength shift with the pumping power changing from 0.216 nm/W to 0.16 nm/W. Thus, the internal heating effects are different for VECSEL with different mirrors. The divergence angles at two orthogonal directions are 9.2° and 9.0°, respectively. And the circle profile of optical field shows good symmetry. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3