Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays

Author:

Wang Zhi-Peng,Zhang Feng,Yang Jia-Wei,Li Peng-Tao,Guan Bao-Lu,

Abstract

In recent years, with the increase of information processing capacity of optical networks and the continuous improvement of high-density optical communication technology, the requirements for the performance of light sources are also increased. High-quality VCSEL with beam polarization stability control plays an increasingly important role in the above fields. The combination of liquid crystal and vertical cavity surface emitting laser (VCSEL) array can realize wavelength tunability and precise polarization control. At the same time, the introduction of liquid crystal will also change the thermal characteristics of VCSEL array. In this paper, the structure of VCSEL array is designed and the experimental research on the thermal characteristics of VCSEL array is carried out. The effects of nematic liquid crystal layer on the thermal characteristics of VCSEL array are compared and analyzed. The experimental results show that the threshold current temperature change rate of 1 × 1, 2 × 2 and 3 × 3 surface liquid crystal VCSEL array can be reduced by 23.6% and the thermal resistance can be reduced by 26.75%. Moreover, the saturated optical power of VCSEL array can be improved to a different degree. Meanwhile, the liquid crystal layer can effectively increase the heat transverse conduction and reduce the optical hole. The temperature difference between the light outlet and the table makes the heat conduction time very short at a small distance between the light outlet and the table, which is more conducive to the uniform temperature distribution of the laser array. The experimental results show that the temperature difference between the light outlet and the surrounding is less than 0.5 ℃. To sum up, the introduction of liquid crystal layer into VCSEL array not only greatly accelerates the thermal diffusion of laser array unit, but also reduces the junction temperature of active region, improves the thermal characteristics of VCSELs laser array, and lays a good theoretical and experimental foundation for realizing the high beam quality single polarization wavelength controllable VCSEL laser array.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Larsson A 2011 IEEE J. Sel. Top. Quantum 17 1552

2. Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329

3. Iga K, Kinoshita S, Koyama F 1987 Electron. Lett. 23 134

4. Moench H, Kolb J S, Engelhardt A P, Gerlach P, Jaeger R, Pollmann-Retsch J, Weichmann U, Witzigmann B 2014 Conference on Vertical-Cavity Surface-Emitting Lasers XVIII, San Francisco, CA, USA, February 5–6, 2014 p9001

5. Zhang J W, Ning Y Q, Zhang X 2014 Jpn. J. Appl. Phys. 53 070303

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3