Influence of intermediated measurements on quantum statistical complexity of single driven qubit

Author:

Gong Long-Yan,Yang Hui,Zhao Sheng-Mei, ,

Abstract

<sec> Recently, quantum statistical complexity based quantum information theory has received much attraction. Quantum measurements can extract the information from a system and may change its state. At the same time, the method of measuring multiple quantum is an important quantum control technique in quantum information science and condensed matter physics. The main goal of this work is to investigate the influence of multiple quantum measurements on quantum statistical complexity.</sec><sec> It is a fundamental problem to understand, characterize, and measure the complexity of a system. To address the issue, a damped and linearly driven two-level system (qubit) is taken for example. The driving amplitude and dephasing intensity are considered. By using the Lindblad equation and the Born-Markov approximation, the time evolution of the system can be obtained. Under multiple intermediated measurements, the system has a complex dynamic behavior. Quantum statistical complexity <inline-formula><tex-math id="M12">\begin{document}$C$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M12.png"/></alternatives></inline-formula> at the last moment <inline-formula><tex-math id="M13">\begin{document}$\tau$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M13.png"/></alternatives></inline-formula> is studied in detail. The results show that on the whole, <inline-formula><tex-math id="M14">\begin{document}$C$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M14.png"/></alternatives></inline-formula> first increases from zero to a maximal value with <inline-formula><tex-math id="M15">\begin{document}$\tau$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M15.png"/></alternatives></inline-formula> increasing, then decreases, and finally it approaches to zero. At first, the system is in a pure state and <inline-formula><tex-math id="M16">\begin{document}$C=0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M16.png"/></alternatives></inline-formula>. Finally, the system is in a maximally mixed state due to the interaction with the environment and <inline-formula><tex-math id="M17">\begin{document}$C=0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M17.png"/></alternatives></inline-formula> again. When the number of measurements <inline-formula><tex-math id="M18">\begin{document}$N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M18.png"/></alternatives></inline-formula> is relatively small, <inline-formula><tex-math id="M19">\begin{document}$C$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M19.png"/></alternatives></inline-formula> fluctuates with <inline-formula><tex-math id="M20">\begin{document}$\tau$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M20.png"/></alternatives></inline-formula> increasing, but when <inline-formula><tex-math id="M21">\begin{document}$N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M21.png"/></alternatives></inline-formula> is relatively large, the fluctuations disappear. Due to the quantum Zeno effect, as <inline-formula><tex-math id="M22">\begin{document}$N$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M22.png"/></alternatives></inline-formula> is larger, the variation of <inline-formula><tex-math id="M23">\begin{document}$C$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M23.png"/></alternatives></inline-formula> with <inline-formula><tex-math id="M24">\begin{document}$\tau$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M24.png"/></alternatives></inline-formula> is similar to that for the case of no intermediated measurement. Because of the quantum superposition principle, uncertainty principle, and quantum collapse, quantum measurement can disturb the system, so quantum statistical complexity <inline-formula><tex-math id="M25">\begin{document}$C$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="23-20200802_M25.png"/></alternatives></inline-formula> exhibits a complex behavior.</sec><sec> In the quantum realm, the complexity of a system can be transformed into a resource. The quantum state needs creating, operating, or measuring. Therefore, all our results provide a theoretical reference for the optimal controlling of quantum information process and condensed matter physics. At the same time, the number of the degrees of freedom is two for the damped and linearly driven two-level system, so this system is simple and easy to study. The complexity of such a system can be tailored by properly tuning the driving strength. Therefore, the model can be used as a typical example to study the quantum statistical complexity.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Sen K D (Editor) 2011 Statistical Complexity: Applications in Electronic Structure (1st Ed.) (Netherlands: Springer) pp vii–xi

2. Hao B L 2001 Physics 30 466
郝柏林 2001 物理 30 466

3. Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) pp4−8 (in Chinese)
冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第4−8页

4. Kadanoff L P 1991 Physics Today 44 9

5. Boffetta G, Cencini M, Falcioni M, Vulpiani A 2002 Phys. Rep. 356 367

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3