Maximum ceasing angle of inclination andflux formula for granular orifice flow in water

Author:

Xie Wen-Tao,Li Ruo-Ru,Peng Zheng,Jiang Yi-Min, ,

Abstract

In previous work [<i>Acta Phys. Sin</i>. <b>60</b> 054501 (2011)], we found that for inclined Granular Orifice Flow (GOF) in air, regardless of the orifice size, the flow rate <i>Q</i> had a good linear relationship with the cosine of the inclination <inline-formula><tex-math id="M3">\begin{document}$\cos \theta $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M3.png"/></alternatives></inline-formula>, i.e. <inline-formula><tex-math id="M4">\begin{document}$\dfrac{Q}{{{Q_0}}} = 1 - \dfrac{{\cos \theta - 1}}{{\cos {\theta _{\rm c}} - 1}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M4.png"/></alternatives></inline-formula>, where <i>Q</i><sub>0</sub> is flow rate at <inline-formula><tex-math id="M5">\begin{document}$\theta ={0^ \circ }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M5.png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M6">\begin{document}${\theta _{\rm c}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M6.png"/></alternatives></inline-formula> is the critical angle of flow ceasing obtained by linear extrapolation. Moreover, <inline-formula><tex-math id="M7">\begin{document}${\theta _{\rm c}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M7.png"/></alternatives></inline-formula> increased linearly with ratio between grain and orifice diameter <i>d</i>/<i>D</i>, and at the limit of <i>d</i>/<i>D</i> going to zero (that is, <i>D</i> going to infinity), the angle of repose of the sample <inline-formula><tex-math id="M8">\begin{document}${\theta _{\rm r}}~( = 180^ \circ - \theta _{\rm c\infty})$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M8.png"/></alternatives></inline-formula> was obtained. Since the flow of GOF is very stable, we believe that the linear extrapolation of the above-mentioned inclined GOF provides a novel method for accurately measuring the angle of repose of granular materials. This method has been proved to be effective in a wider orifice size range by another work [<i>Acta Phys. Sin</i>. <b>65</b> 084502 (2016)]; and three angles, namely the repose angle measured by GOF, the free accumulation angle of a sandpile and the internal friction angle of the granular material measured by Coulomb yielding, are confirmed to be consistent. In this work, we extend this method to underwater, measuring the mass flow rate of a granular sample (glass beads) which completely immersed in water and driven by gravity, discharged from an inclined orifice for various inclination angles and orifice diameters. It is found that similar to the case in air, regardless of the orifice size, the flow rate increase linearly with the cosine of the inclination; the critical angle of flow ceasing increases linearly with ratio between grain and orifice diameter; at the limit of infinite orifice, this critical angle is consistent with the repose angle of the underwater sample within the experimental error range. In addition, all measurements can be well fitted by using the Beverloo formula <inline-formula><tex-math id="M9">\begin{document}$Q = {C_0}\rho {g^{1/2}}{(D - kd)^{5/2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20200217_M9.png"/></alternatives></inline-formula>, where the parameters <i>C</i><sub>0</sub> and <i>k</i> are only related to the cosine of the inclination, and are linear and inversely squared, respectively. Compared with the results of GOF in air reported by previous work, it is found that the difference mainly comes from the influence of buoyancy and fluid drag forces on the parameter <i>C</i><sub>0</sub>. These results show that both the method of measuring angle of repose with the inclined GOF and the Beverloo formula have certain universality. The behavior of GOF is qualitatively the same whether the interstitial fluid is water or air.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3