Application of electrical action to design and analysis of magnetically driven solid liner implosion

Author:

Zhang Zheng-Wei,Wang Gui-Lin,Zhang Shao-Long,Sun Qi-Zhi,Liu Wei,Zhao Xiao-Ming,Jia Yue-Song,Xie Wei-Ping,

Abstract

As a typical cylindrical-convergent drive technique, magnetically driven solid liner implosion could compress interior substance with a shock or quasi-isentropic manner, which has been widely used to investigate the hydrodynamic behavior, the dynamic characteristics of material and fusion energy and so on. For aspecific facility, the implosion parameters depend on material, radius and thickness of the liner, and the ablation of liner restrict the optional parameters. The concept of electrical action is introduced via thin shell model, which not only is the representation of states for conductive metal, but also indicates the change of liner velocity under the condition of thin shell hypothesis. The result shows that the outer velocity of liner increases linearly with electrical action and is directly proportional to liner thickness but inversely proportional to liner density. The incompressible zero-dimensional model is used to calculate the dynamic parameters of thin shell liner, including the implosion time, the outer interface velocity, the implosion kinetic energy, and the electrical action under the condition of low linear current density. There exist optimal radius and thickness which can achieve the maximum velocity, momentum, and kinetic energy. The aluminum is suitable for reaching higher velocity and the copper can obtain higher pressure according to a proportionality coefficient <i>Q</i><sub>b</sub>/<i>ρ</i> which is an intrinsic quality of metal. A one-dimensional (1D) elastic plastic magnetic hydrodynamic code which is called SOL1D is developed to simulate liner implosion behavior. The modified relationship between resistivity and electrical action is introduced to SOL1D, which can adapt higher hydrodynamic pressure. According to current waves, the 1D code can be used to simulate liner implosion behavior for all kinds of current densities. The 1D simulation liner velocity is in agreement with both the experimental results and the electrical action model for liner implosion experiment on FP-1 facility. The simulation of isentropic compression experiment at ZR facility shows that the magnetic diffusion process is suppressed at extra high current density and hydrodynamic pressure, and the electrical action is larger than the experimental value of wire electrical explosion. The zero-dimensional (0D) and 1D simulation show that estimating the liner velocity and liner phase changing via the electrical action are suitable when thin shell hypothesis and low current density assumption are satisfied.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Bowers R L, Brownell J H, Lee H, Mclenithan K D, Scannapieco A J, Shananhan W R 1998 J. Appl. Phys. 83 4146

2. Hanmmerberg J E, Kyrala G A, Oro D M, Fulton R D, Anderson W E, Obst A W, Oona H, Stokes J 1999 Los Alamos National Laboratory Report LA-UR-99-3378 (New Mexico: Los Alamos National Laboratory)

3. Degnan J H, Alme M L, Austin B S, et al. 1999 Phys. Rev. Lett. 82 2681

4. Reinovsky R E 2000 IEEE Trans. Plasma Sci. 28 1563

5. Rodriguez G, Roberts J P, Echave J A, Taylor A J 2001 Rev. Sci. Instrum. 72 3230

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3