Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing

Author:

Luo Chang-Wei,Qiu Meng-Lin,Wang Guang-Fu,Wang Ting-Shun,Zhao Guo-Qiang,Hua Qing-Song, ,

Abstract

<sec>The optical and electrical properties of ZnO related on the type and the concentration of defects in ZnO crystal. Ion implantation and annealing can change the type and the concentration of defects in ZnO. To understand the variation of defects in ZnO during ion implantation and after different temperature annealing, in situ luminescence measurements of ZnO crystal samples were carried out by ion beam induced luminescence (IBIL) during ion implantation of 2 MeV H<sup>+</sup> and then after annealing at 473 K and 800 K in vacuum on the GIC4117 tandem accelerator in Beijing Normal University.</sec><sec>IBIL spectra of ZnO showtwo emission peaks: UV emission, which is called near band emission (NBE), and visible emission, which is called deep band emission (DBE).The high-intensity of DBE and weak NBE of IBIL spectra of ZnOmay be due to the NBE is intrinsic to ZnO samples and therefore is just visibly observed from samples that are virtually defect-free. With the ion implantation, the destruction of the crystal structure and the arising of a mass of defects, inducing the weak intensity NBE and intense DBE.In addition, the overall IBIL spectra of ZnOreveal decrease intensity with the ion fluence,which indicates that the concentration of luminescence centersdecreases duringion implantation.With the H<sup>+</sup> fluence, the concentration of the point defects increases. The point defects migrate and subsequently agglomerate into larger defect clusters. These defect clusters serve as traps for catching electrons and holes, which result in the quenching of luminescence centres. Annealing can help todecompose the defect clusters and repair the defects of crystal. However, amounts of defects and clusters still remain in the irradiated sample annealed at 473 K in vacuum, which acted as nonradiative center and suppress the luminescence induced weak intensity of IBIL. Annealing the sample at 800 K in vacuum may facilitate the decomposition of defect clusters during ion irradiation to point defects and the point defect return to the lattice position that can reduce the nonequilibrium defects inside the crystal and improve the crystallinity of the crystal, which increase the intensity of its IBIL.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3