Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging

Author:

Jiang Wei,Zhao Huan,Wang Guo-Cui,Wang Xin-Ke,Han Peng,Sun Wen-Feng,Ye Jia-Sheng,Feng Sheng-Fei,Zhang Yan,

Abstract

Fabricating integratable and high-efficiency optical polarization devices is one of the fundamentally important challenges in the field of terahertz optics. Compared with the traditional polarization materials such as quartz crystal and liquid crystal, MgO crystal is one of the most important potential candidates for fabricating terahertz optical devices due to its high transmittance in terahertz frequency region. To determine the birefringence characteristics of MgO crystal in the terahertz frequency region, the modulation of the polartization state of a terahtertz wave through a <inline-formula><tex-math id="Z-20201014200839">\begin{document}$\left\langle {100} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200839.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200839.png"/></alternatives></inline-formula> crystalline MgO flake is studied using terahertz focal plane imaging method. Within this approach, the polarization of a terahertz wave can be intuitively identified from the imaging of the amplitude and the phase of the <i>z</i>-direction component of terahertz electronic field. By measuring the imaging of both the amplitude and the phase of terahertz field with and without passing through the <inline-formula><tex-math id="Z-20201014200825">\begin{document}$\left\langle {100} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200825.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200825.png"/></alternatives></inline-formula> crystalline MgO flake, it is found that the left and right circularly polarized light are converted into perpendicular linearly-polarized light after passing through the MgO flake. The polarization direction of the linearly polarized light changes with the rotating of MgO flake along the direction perpendicular to the light propagation. The conversion between the linearly polarized light and the circularly polarized light is analyzed by using the Jones matrix approach. These properties indicate that the <inline-formula><tex-math id="Z-20201014200830">\begin{document}$\left\langle {100} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200830.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200830.png"/></alternatives></inline-formula> crystalline MgO flake acts as a quarter wave plate for terahertz waves. To further identify the character of terahertz quarter wave plate, the refractive index of the ordinary and extrordinary light within terahertz frequency region of crystalline MgO crystal are measured by using transmission terahertz time-domain spectroscopy system. By comparing the phase difference between the ordinary and extraordinary light after passing through the MgO flake, it is shown that a quarter of wavelength difference between the ordinary and extraordinary light is obtained. These results indicate that the <inline-formula><tex-math id="Z-20201014200904">\begin{document}$\left\langle {100} \right\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200904.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20200766_Z-20201014200904.png"/></alternatives></inline-formula> crystalline MgO crystals can be used to fabricate quarter wave plates and relevant polarization devices in the terahertz band.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference24 articles.

1. Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843
成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843

2. Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445
沈飞, 应义斌 2009 光谱学与光谱分析 29 1445

3. Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853

4. Han X, An J X, Zhong L L 2018 Electron. World 3 5
韩晓, 安景新, 钟玲玲 2018 电子世界 3 5

5. Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37
苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3