Comparison of performance of rank aggregation algorithms in aggregating a small number of long rank lists

Author:

Chen Wen-Yu,Zhu Zhang-Qian,Wang Xiao-Meng,Jia Tao, ,

Abstract

Rank aggregation aims to combine multiple rank lists into a single one, which has wide applications in recommender systems, link prediction, metasearch, proposal selection, and so on. Some existing studies have summarized and compared different rank aggregation algorithms. However, most of them cover only a few algorithms, the data used to test algorithms do not have a clear statistical property, and the metric used to quantify the aggregated results has certain limitations. Moreover, different algorithms all claim to be superior to existing ones when proposed, the baseline algorithms, the testing samples, and the application scenario are all different from case to case. Therefore, it is still unclear which algorithm is better for a particular task. Here we review nine rank aggregation algorithms and compare their performances in aggregating a small number of long rank lists. We assume an algorithm to generate different types of rank lists with known statistical properties and cause a more reliable metric to quantify the aggregation results. We find that despite the simplicity of heuristic algorithms, they work pretty well when the rank lists are full and have high similarities. In some cases, they can reach or even surpass the optimization-based algorithms in performance. The number of ties in the list will reduce the quality of the consensus rank and increase fluctuations. The quality of aggregated rank changes non-monotonically with the number of rank lists that need to be combined. Overall, the algorithm FAST outperforms all others in three different rank types, which can sufficiently complete the task of aggregating a small number of long rank lists.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3