Surface plasmon induced transparency in coupled microcavities assisted by slits

Author:

Chu Pei-Xin,Zhang Yu-Bin,Chen Jun-Xue,

Abstract

The coupled waveguide-microcavity structure has a wide range of applications in optical filters and optical modulators. The optical transmission properties of structure are mostly determined by the coupling strength of the modes. In the conventional waveguide-microcavity structure, the mode coupling is finished by the form of evanescent field, which is usually achieved by controlling the geometric spacing between waveguide and microcavity. Surface plasmon polaritons are the excitations of the electromagnetic waves coupled to collective oscillations of free electrons in metal. Since the electromagnetic waves are attenuated sharply in the metal, this requires precise control of the spacing between the waveguide and the metal microcavity, and poses a great challenge for controlling the coupling of modes in the metal waveguide-cavity structure. In this paper, we proposed a scheme of using a metal-dielectric-metal waveguide side coupling metal microcavities to overcome this limit. Based on the resonant characteristics of the Fabry–Pérot mode in the metal microcavity, a slit is introduced to connect the waveguide and microcavities. By adjusting the width and the offset location of slits, the leakage rate and coupling strength of the mode in metal microcavity can be controlled. The finite difference frequency domain (FDFD) method was used to numerically simulate the electromagnetic properties of structure. First, we have studied the transmission behaviors of surface plasmon polaritons in the system consisted by metal waveguide and single microcavity. As other microcavity is introduced to the structure and connected the original microcavity by slit, the electromagnetically induced transparency phenomena based on surface plasmon polaritons are demonstrated in the coupled metal waveguide and double microcavities structure. As the width of slit connected the microcavity is increased, the transmission peak of structure and the full width at half maximum of the transparency window also increase accordingly. The change of the geometric parameters of slit will modulate the resonance characteristics of structure, and the corresponding physical mechanism is explained by the temporal coupled mode theory. In our works, the metal waveguide and microcavities are coupled by the energy leakage of microcavities assisted by slits, which breaks the limit of separation distance between metal waveguide and microcavity, and contributes to the manufacture of devices. The results of the paper will have applications in designing the compact photonic devices based on surface plasmon polaritons.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3