530 W all-fiber continuous-wave Tm-doped fiber laser

Author:

Liu Yin-Zi,Xing Ying-Bing,Liao Lei,Wang Yi-Bo,Peng Jing-Gang,Li Hai-Qing,Dai Neng-Li,Li Jin-Yan,

Abstract

In the past decades, thulium-doped fiber lasers (TDFLs) operating in an eye-safe range have attracted considerable attention, for they have extensive applications such as LIDAR, free space communication, medical diagnostics and pumping source for holmium-doped fiber laser or optical parameter oscillator. In this paper, we report a high power all-fiberized TDFL based on main-oscillator power-amplifier (MOPA) configuration. The preform is fabricated by the modified chemical vapor deposition method combined with solution doping technique and drawn into a core/clad size of 25/400 μm. The numerical aperture of the TDF is 0.1. The concentration of Tm<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> are 2.6 wt% and 1.01 wt%, respectively, measured by an electron probe micro-analyzer. The cladding absorption is 3 dB/m at 793 nm measured by cut-back method. The oscillator consists of 8 m 25/400 TDF mentioned above and a pair of fiber Bragg gratings. The oscillator yields maximum power of 91 W with pump power of 202 W and a 3 dB spectral bandwidth as narrow as 75 pm. In the amplifier stage, the bi-directional pumping scheme is employed. The narrow linewidth seed with output power of 57 W is scaled to 530 W through one-stage amplification, corresponding to a slope efficiency of 50%. The central wavelength of the Tm-doped MOPA is 1980.89 nm and the linewidth is broadened to 0.11 nm at 530 W. The measured <i>M</i> <sup>2</sup> factor at 100 W is less than 1.3. Neither obvious amplified spontaneous emission nor non-linear effect is observed, and the output power is only limited by pump power. To the best of our knowledge, this is the highest output power of TDF at present.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3