Effect of pre-orientation on formation of microstructure of lamella crystal and the stress response of semicrystalline polymers: Molecular dynamics simulations

Author:

Yang Jun-Sheng,Zhu Zi-Liang,Cao Qi-Long, , ,

Abstract

Molecular dynamics simulations have been used to study the effect of the pre-orientation on the microstructure of lamella crystal and the stress response of polyvinyl alcohol (PVA) semicrystalline polymer under stretching. For the different pre-oriented systems, nucleation is demonstrated to be a two-step process, however, in a different intermediate order. For the isotropic PVA polymer melt, the segment needs more time to adjust its inter-chain structure, therefore, the nucleation is assisted by local order structures, while the nucleation of the oriented PVA melt is promoted by density fluctuation. The nucleation process is the result of coupling effect of conformational and orientational ordering. The transformation from flexible chains into conformational ordered segments circumvents the entropic penalty under the shear flow, which is the most peculiar and rate-limited step in polymer crystallization. Therefore, the current work suggests that the acceleration of the nucleation rate by shear deformation is mainly attributed to the different kinetic pathway via conformational/orientational ordering-density fluctuation-nucleation. From the different pre-oriented PVA semicrystalline polymers, we know that the higher oriented degree corresponds to a higher number of Tie chains and lower Loop chains, and the higher number of Tie chains corresponds to a stronger stress-strain response. And the detailed molecular structural evolution of semicrystalline polymer under stretching is also given in this work.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3