The electron transfer properties of an open double quantum dot based on a quantum point contact

Author:

Lan Kang,Du Qian,Kang Li-Sha,Jiang Lu-Jing,Lin Zhen-Yu,Zhang Yan-Hui,

Abstract

We theoretically study the electron transfer properties of a double quantum dot system in dissipative and pure dephasing environments based on a quantum dot contact detector. Theoretical results show that in the dissipative environment, the decoherence caused by the detector would increase the stable value of the average current and Fano factor as functions of time. Meanwhile, we find the existence of the quantum Zeno effect during the process of dynamical evolution. In the case of symmetric DQD, the relaxation caused by the dissipative environment would decrease the amplitude of the average current with time evolution and increase the value of the Fano factor in the long time limit. In the case of asymmetric DQD, the relaxation reduces the peak value of Fano factor over time. In the pure dephasing environment, we find that the frequent measurement would hinder the switch between different current channels during the cotunneling process. This results in a high value of Fano factor. In the case of symmetric DQD, increasing the pure dephasing rate would improve the value of Fano factor. In the case of asymmetric DQD, the dynamical evolution with time is not sensitive to the pure dephasing rate. In addition, it is indicated that the transfer probability of electron in the detector is only affected by the coupling between QPC and DQD. The environments have no effect on the transfer of a single electron in the detector. Our theoretical results provide theoretical references for experimental researchers to study the electron transport properties.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3